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Figure 1. Illustration and capabilities of Prompt Depth Anything. (a) Prompt Depth Anything is a new paradigm for metric depth
estimation, which is formulated as prompting a depth foundation model with a metric prompt, specifically utilizing a low-cost LiDAR as
the prompt. (b) Our method enables consistent depth estimation, addressing the limitations of Metric3D v2 [24] that suffer from inaccurate
scale and inconsistency. (c) It achieves accurate 4K accurate depth estimation, significantly surpassing ARKit LiDAR Depth (240 × 320).

Abstract

Prompts play a critical role in unleashing the power of lan-
guage and vision foundation models for specific tasks. For
the first time, we introduce prompting into depth founda-
tion models, creating a new paradigm for metric depth esti-
mation termed Prompt Depth Anything. Specifically, we
use a low-cost LiDAR as the prompt to guide the Depth
Anything model for accurate metric depth output, achiev-
ing up to 4K resolution. Our approach centers on a concise
prompt fusion design that integrates the LiDAR at multiple
scales within the depth decoder. To address training chal-
lenges posed by limited datasets containing both LiDAR
depth and precise GT depth, we propose a scalable data
pipeline that includes synthetic data LiDAR simulation and
real data pseudo GT depth generation. Our approach sets
new state-of-the-arts on the ARKitScenes and ScanNet++
datasets and benefits downstream applications, including
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3D reconstruction and generalized robotic grasping.

1. Introduction
High-quality depth perception is a fundamental challenge
in computer vision and robotics. Recent monocular depth
estimation has experienced a significant leap by scaling the
model or data, leading to the flourishing of depth founda-
tion models [18, 28, 67, 68]. These models demonstrate
strong abilities in producing high-quality relative depth, but
suffer from scale ambiguity, hindering their practical ap-
plications in autonomous driving and robotic manipulation,
etc. Therefore, significant efforts have been made to achieve
metric depth estimation, by either finetuning depth foun-
dation models [6, 19] on metric datasets or training met-
ric depth models with image intrinsics as additional in-
puts [8, 24, 44, 72]. However, neither of them can address
the problem properly, as illustrated in Fig. 1(b).

A natural question thus arises: Do these foundation mod-
els truly lack utility in accurate metric depth estimation?
This reminds us to closely examine the foundation models
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in natural language [1, 9] and vision [37, 38, 50], which
often involve pre-training and instruction tuning stages. A
properly designed prompt and a instruction dataset can un-
lock the power of foundation models on downstream tasks.
Inspired by these successes, we propose a new paradigm for
metric depth estimation by treating it as a downstream task,
i.e., prompting a depth foundation model with metric infor-
mation. We believe this prompt can take any form as long
as the scale information is provided, e.g., camera intrinsics.
In this paper, we validate the feasibility of the paradigm by
choosing low-cost LiDAR as the prompt for two reasons.
First, it provides precise metric scale information. Second,
it is widely available, even in common mobile devices (e.g.,
Apple iPhone has a LiDAR).

Specifically, based on Depth Anything [68], we propose
Prompt Depth Anything, which achieves 4K resolution ac-
curate metric depth estimation. At the core of our method is
a concise prompt fusion architecture tailored for the DPT-
based [46] depth foundation models [8, 68]. The prompt
fusion architecture integrates the LiDAR depth at multiple
scales within the DPT decoder, fusing the LiDAR features
for depth decoding. The metric prompt provides precise
spatial distance information, making the depth foundation
model particularly serve as a local shape learner, resulting
in accurate and high-resolution metric depth estimation.

Training Prompt Depth Anything requires both LiDAR
depth and precise GT depth. However, existing synthetic
data [49] lacks LiDAR depth, and real-world data [70] with
LiDAR only has an imprecise GT depth of bad edges. To
solve this challenge, we propose a scalable data pipeline
that simulates low-resolution, noisy LiDAR for synthetic
data and generates pseudo GT depth with high-quality
edges for real data using a reconstruction method [2]. To
mitigate errors in the pseudo GT depth from the 3D recon-
struction, we introduce an edge-aware depth loss that lever-
ages only the gradient of pseudo GT depth, which is promi-
nent at edges. We experimentally demonstrate that these
efforts result in highly accurate depth estimation.

We evaluate the proposed method on ARKitScenes [3]
and ScanNet++ [70] datasets containing iPhone ARKit
depth. It consistently exhibits state-of-the-art performance
across datasets and metrics. Even our zero-shot model
achieves better performance compared to other methods [6,
68] in non-zero-shot testing, highlighting the generalization
ability of prompting a foundation model. We also show that
the foundation model and prompt of Prompt Depth Any-
thing can be replaced with DepthPro [8] and vehicle Li-
DAR [53], respectively. Furthermore, we demonstrate that
it benefits several downstream applications, including 3D
reconstruction and generalized robotic object grasping.

In summary, this work has the following contributions:
• Prompt Depth Anything, a new paradigm for metric depth

estimation by prompting a depth foundation model with a

low-cost LiDAR as the metric prompt.
• A concise prompt fusion architecture for depth founda-

tion models, a scalable data pipeline, and an edge-aware
depth loss to train Prompt Depth Anything.

• State-of-the-art performance on depth estimation bench-
marks [3, 70], showing the extensibility of replacing
depth foundation models and LiDAR sensors, and high-
lighting benefits for several downstream applications in-
cluding 3D reconstruction and robotic object grasping.

2. Related Work

Monocular depth estimation. Traditional methods [23,
52] rely on hand-crafted features for depth estimation. With
the advent of deep learning, this field has seen signifi-
cant advancements. Early learning-based approaches [14,
15] are often limited to a single dataset, lacking gen-
eralization capabilities. To enhance generalization, di-
verse datasets [12, 32, 59–61, 63, 64, 69], affine-invariant
loss [45], and more powerful network architectures [46]
have been introduced. More recently, latent diffusion mod-
els [50], pre-trained on extensive image generation tasks,
have been applied to depth estimation [20, 28]. These mod-
els exhibit good generalization, estimating relative depth ef-
fectively, though they remain scale-agnostic. To achieve
metric depth estimation, early methods either model the
problem as global distribution classification [4, 5, 17, 35] or
fine-tune a depth model on metric depth datasets [6, 33, 34].
Recent methods [19, 24, 44, 71, 72] discuss the ambiguity
in monocular metric depth estimation and address it by in-
corporating camera intrinsic parameters. Although recent
methods [8, 20, 24, 28, 44, 68, 72] exhibit strong gen-
eralization ability and claim to be depth foundation mod-
els [8, 18, 24, 68], metric depth estimation remains a chal-
lenge as shown in Fig. 1(b). We seek to address this chal-
lenge by prompting the depth foundation models with a
metric prompt, inspired by the success of prompting in vi-
sion and vision-language models [37, 38, 75].

Depth estimation with auxiliary sensors. Obtaining
dense depth information through active sensors typically
demands high power consumption. A more practical ap-
proach involves utilizing a low-power active sensor to cap-
ture sparse depth, which can then be completed into dense
maps. Many studies investigate methods to fill in sparse
depth data. Early works rely on filter-based [21, 26, 30]
and optimization-based [16, 66] techniques for depth com-
pletion. More recent studies [10, 11, 13, 36, 39, 55–
57, 65, 76] adopt learning-based approaches for depth com-
pletion. Typically, these methods are not tested on real in-
door LiDAR data but rather on simulated sparse lidar for
depth datasets such as NYUv2 [15] to reconstruct com-
plete depth. This is because real testing setups require both
low-power and high-power LiDAR sensors. More recent
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Figure 2. Overview of Prompt Depth Anything. (a) Prompt Depth Anything builds on a depth foundation model [68] with a ViT encoder
and a DPT decoder, and adds a multi-scale prompt fusion design, using a prompt fusion block to fuse the metric information at each scale.
(b) Since training requires both low-cost LiDAR and precise GT depth, we propose a scalable data pipeline that simulates LiDAR depth
for synthetic data with precise GT depth, and generates pseudo GT depth for real data with LiDAR. An edge-aware depth loss is proposed
to merge accurate edges from pseudo GT depth with accurate depth in textureless areas from FARO annotated GT depth on real data.

works have collected both low-power and high-power Li-
DAR data. To collect such data, DELTA [31] builds a suite
to collect data using L5 and Intel RealSense 435i, while
three other datasets [3, 48, 70] are collected using iPhone
LiDAR and FARO LiDAR. We focus on the latter, as iPhone
is widely available. A recent work similar to ours is Depth
Prompting [41]. Our approach differs in that we use a net-
work to take sparse depth as a prompt for the depth foun-
dation model, achieving specific output. In contrast, they
fuse sparse depth with features from the depth foundation
model to post-process the foundation model output, which
does not constitute prompting a foundation model.

3. Method

Monocular depth estimation models [8, 67, 68] are becom-
ing depth foundation models for their generalization abil-
ity obtained from large-scale data. However, due to the in-
herent ambiguities, they cannot achieve high accuracy on
metric depth estimation as shown in Fig. 1(b). Inspired by
the success of prompting for vision [29, 38, 50] and lan-
guage [1] foundation models, we propose Prompt Depth
Anything prompting the depth foundation model with a met-
ric prompt to achieve metric depth estimation. We take the
low-cost LiDAR as the metric prompt in this work, as it has
recently been integrated into lots of smartphones, making
this setup highly practical. To be specific, we aim to prompt
the depth foundation model to unleash its power for accu-
rate metric depth estimation.

3.1. Preliminary: Depth Foundation Model

Current depth foundation models [7, 67, 68, 72] gener-
ally share similar network structures of DPT [46] networks.
Specifically, given an image I ∈ RC×H×W , they take a
vision transformer (ViT) with multiple stages to extract to-

kenized image features {Ti}, where Ti ∈ RCi×(H
p ×W

p +1)

represents the feature map at stage Si, Di is the feature di-
mension at stage Si, and p is the patch size. The DPT de-
coder reassembles features from different stages into image-
like representations Fi ∈ RDi×H

p ×W
p with the reassemble

operation [46]. Finally, a sequence of convolutional blend-
ing steps are applied to merge features Fi across different
stages, predicting a dense depth map D ∈ RH×W .

We note that there exists another line of depth foundation
models [18, 20, 28] that use the image diffusion model [51]
to estimate depth maps. Due to the high computational
cost of diffusion models, we only consider DPT-based depth
foundation models [8, 68] as our base model for real-time
performance in this work.

3.2. Prompt Depth Anything

In this section, we seek to find a concise way to incorporate
a low-cost LiDAR (i.e., a low-resolution and noisy depth
map) as a prompt into the depth foundation model. To
this end, we propose a concise prompt fusion architecture
tailored for the DPT-based [46] depth foundation models
to integrate low-resolution depth information. As shown
in Fig. 2(a), the prompt fusion architecture integrates low-
resolution depth information at multiple scales within the
DPT Decoder. Specifically, for each scale Si in the DPT
Decoder, a low-resolution depth map L ∈ R1×HL×WL is
firstly bilinearly resized to match the spatial dimensions
of the current scale R1×Hi×Wi . Then, the resized depth
map is passed through a shallow convolutional network to
extract depth features. After that, the extracted features
are projected to the same dimension as the image features
Fi ∈ RCi×Hi×Wi using a zero-initialized convolutional
layer. Finally, the depth features are added to the DPT in-
termediate features for depth decoding. The illustration of
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Figure 3. Effects on the synthetic data lidar simulation and real
data pseudo GT generation with the edge-aware depth loss.
The middle and right columns are the depth prediction results of
our different models. The two rows highlight the significance of
sparse anchor interpolation for lidar simulation and pseudo GT
generation with edge-aware depth loss, respectively.

this block design is shown in Fig. 2.
The proposed design has the following advantages.

Firstly, it introduces only 5.7% additional computational
overhead (1.789 TFLOPs v.s. 1.691 TFLOPs for a 756 ×
1008 image) to the original depth foundation model, and ef-
fectively addresses the ambiguity issue inherent in the depth
foundation model as demonstrated in Tab. 3(b). Secondly, it
fully inherits the capabilities of the depth foundation model
because its encoder and decoder are initialized from the
foundation model [68], and the proposed fusion architecture
is zero-initialized, ensuring that the initial output is identical
to that of the foundation model. We experimentally verify
the importance of inheriting from a pretrained depth foun-
dation model as shown in Tab. 3(c).
Optional designs. Inspired by conditional image gener-
ation methods [27, 42, 75], we also explore various po-
tential prompt conditioning designs into the depth foun-
dation model. Specifically, we experimented with the fol-
lowing designs: a) Adaptive LayerNorm [27, 43] which
adapts the layer normalization parameters of the encoder
blocks based on the conditioning input, b) CrossAtten-
tion [58] which injects a cross attention block after each
self-attention block and integrates the conditioning in-
put through cross-attention mechanisms, and c) Control-
Net [75] which copies the encoder blocks and inputs control
signals to the copied blocks to control the output depth. As
shown in Tab. 3(d,e,f), our experiments reveal that these de-
signs do not perform as well as the proposed fusion block.
A plausible reason is that they are designed to integrate
cross-modal information (e.g., text prompts), which does
not effectively utilize the pixel alignment characteristics be-
tween the input low-res LiDAR and the output depth. We
detail these optional designs in the supp.

3.3. Training Prompt Depth Anything

Training Prompt Depth Anything simultaneously requires a
low-cost LiDAR and precise GT depth. However, synthetic
data [49] do not contain LiDAR depth, real-world data with
noisy LiDAR depth [70] only have imprecise depth annota-
tions. Therefore, we propose a LiDAR simulation method
for synthetic data and generate pseudo GT depth from Zip-
NeRF [2] with an edge-aware depth loss for real data.

Synthetic data: LiDAR simulation. A LiDAR depth map
is low-resolution and noisy. The naive approach for simu-
lating it is to directly downsample the synthetic data depth
map. However, this method leads to the model learning
depth super-resolution, as shown in Fig. 3, meaning that
the model does not correct the LiDAR noise. To simu-
late the noise, we introduce a sparse anchor interpolation
method. Specifically, we first downsample the GT depth
map to low-resolution (192 × 256, exactly the depth res-
olution of iPhone ARKit Depth). Then we sample points
on this depth map using a distorted grid with a stride (7 in
practice). The remaining depth values are interpolated from
these points using RGB similarity with KNN. As shown in
Fig. 3, it effectively simulates LiDAR noise and results in
better depth prediction. We provide visualization results of
the simulated LiDAR in the supp.

Real Data: Pseudo GT depth generation. We also add
real data [70] to our training data. The annotated depth
in ScanNet++ [70] is re-rendered from a mesh scanned by
a high-power LiDAR sensor (FARO Focus Premium laser
scanner). Due to the presence of many occlusions in the
scene, several scan positions (typically 4 in a medium-sized
scene in ScanNet++) result in an incomplete scanned mesh,
leading to depth maps with numerous holes and poor edge
quality, as illustrated in Fig. 2(b). Motivated by the suc-
cess of reconstruction methods [2, 40], we propose using
Zip-NeRF [2] to recover high-quality depth maps. Specifi-
cally, we train Zip-NeRF for each scene in ScanNet++ and
re-rendered pseudo GT depth. To provide Zip-NeRF with
high-quality and dense observations, we detect unblurred
frames in Scannet++iPhone videos, and additionally utilize
DSLR videos to provide high-quality dense-view images.

Real Data: Edge-aware depth loss. Although Zip-NeRF
can generate high-quality edge depth, reconstructing tex-
tureless and reflective regions remains challenging as shown
in Fig. 2(b). In contrast, these areas (e.g., walls, floors, and
ceilings etc.) are usually planar with few occlusions, and the
annotations depth in FARO rendered depth is good in these
regions. This motivates us to leverage the strengths of both.
We propose an edge-aware depth loss to meet these require-
ments. Specifically, we use the FARO scanned mesh depth
and the gradient of the pseudo GT depth to supervise output



depth and the gradient of the output depth, respectively:

Ledge = L1(Dgt, D̂) + λ · Lgrad(Dpseudo, D̂), (1)

Lgrad(Dpseudo, D̂) = (|∂(D̂−Dpseudo)
∂x |+ |∂(D̂−Dpseudo)

∂y |). (2)

In practice, we set λ = 0.5. The depth gradient is mainly
prominent at the edges, which is exactly where the pseudo
GT depth excels. The gradient loss encourages the model to
learn the accurate edges from the pseudo GT depth, while
the L1 loss encourages the model to learn the overall depth,
ultimately leading to excellent depth prediction. We exper-
imentally verify the effectiveness of the edge-aware depth
loss in Tab. 3(j) and Fig. 3.

3.4. Implementation Details

In this section, we provide essential information about the
network design, depth normalization, and training details.
Please refer to the supp. for more details.

Network details. We utilize the ViT-large model as our
backbone model. The shallow convolutional network com-
prises two convolutional layers with a kernel size of 3 and a
stride of 1. More details can be found in the supp. Detailed
running time analysis can be found in Sec. 4.3.

Depth normalization. The irregular range of input depth
data can hinder network convergence. To address this, we
normalize the LiDAR data using linear scaling to the range
[0, 1], based on its minimum and maximum values. The net-
work output is also normalized with the same scaling factor
from LiDAR data, ensuring consistent scales and facilitat-
ing easier convergence during training.

Training details. We initiate training from the metric
model released by Depth Anything v2 [68], incorporating
a 10K step warm-up phase. During this warm-up phase, we
fine-tune this metric model to output a normalized depth de-
rived from the linear scaling of LiDAR data. Subsequently,
we train our model for 200K steps. During the training pro-
cess, the batch size is set to 2, utilizing 8 GPUs. We employ
the AdamW optimizer, with a learning rate of 5e-6 for the
ViT backbone and 5e-5 for the other parameters.

4. Experiments
4.1. Experimental Setup

We mainly conduct experiments on the HyperSim synthetic
dataset [49] and two real-world datasets: ScanNet++ [70]
and ARKitScenes [3], which provide iPhone RGB-LiDAR
data (192 × 256 resolution) and annotated depth from a
high-power LiDAR (1440 × 1920 resolution). We follow
the suggested training and evaluation protocol in [3] for
ARKitScenes, where 40K images are used for training and
5K images for evaluation. For the ScanNet++ dataset, we
randomly select 20 scenes from its 50 validation scenes,

Zero
Shot

Net. / Post. /
w/o LiDAR

384× 512 768x1024 1440x1920
L1 ↓ RMSE ↓ L1 ↓ RMSE ↓ L1 ↓ RMSE ↓

No

Ours 0.0135 0.0326 0.0132 0.0315 0.0138 0.0316
MSPF 0.0153 0.0369 0.0149 0.0362 0.0152 0.0363
Depth Pro∗ 0.0437 0.0672 0.0435 0.0665 0.0425 0.0654
DepthAny. v2∗ 0.0464 0.0715 0.0423 0.0660 0.0497 0.0764
ZoeDepth∗ 0.0831 0.2873 0.0679 0.1421 0.0529 0.0793
Depth Pro∗ 0.1222 0.1424 0.1225 0.1427 0.1244 0.1444
DepthAny. v2∗ 0.0978 0.1180 0.0771 0.0647 0.0906 0.1125
ZoeDepth∗ 0.2101 0.2784 0.1780 0.2319 0.1566 0.1788

Yes

Ourssyn 0.0161 0.0376 0.0163 0.0371 0.0170 0.0376
D.P. 0.0251 0.0422 0.0253 0.0422 0.0249 0.0422
BPNet 0.1494 0.2106 0.1493 0.2107 0.1491 0.2100
ARKit Depth 0.0251 0.0424 0.0250 0.0423 0.0254 0.0426
DepthAny. v2 0.0716 0.1686 0.0616 0.1368 0.0494 0.0764
DepthAny. v1 0.0733 0.1757 0.0653 0.1530 0.0527 0.0859
Metric3D v2 0.0626 0.2104 0.0524 0.1721 0.0402 0.1045
ZoeDepth 0.1007 0.1917 0.0890 0.1627 0.0762 0.1135
Lotus 0.0853 0.1793 0.1038 0.1782 0.1941 0.2741
Marigold 0.0908 0.1849 0.0807 0.1565 0.0692 0.1065
Metric3D v2 0.1777 0.2766 0.1663 0.2491 0.1615 0.2131
ZoeDepth 0.6158 0.9577 0.5688 0.6129 0.5316 0.5605

Table 1. Quantitative comparisons on ARKitScenes dataset.
The terms Net. , Post. and w/o LiDAR refer to the LiDAR
depth usage of models, where “Net.” denotes network fusion,
“Post.” indicates post-alignment using RANSAC, and “w/o Li-
DAR” means the output is metric depth. Methods marked with
∗ are finetuned with their released models and code on ARK-
itScenes [3] and ScanNet++ [70] datasets.

amounting to approximately 5K images for our validation
and the training set are from its 230 training scenes, con-
taining about 60K images. To ensure a fair comparison,
we additionally train a model with HyperSim training set to
achieve zero-shot testing on ScanNet++ and ARKitScenes
datasets. Besides depth accuracy metrics, we also report the
TSDF reconstruction results of our method on ScanNet++,
which reflects the depth consistency. We describe the de-
tails of the evaluation metrics in the supp.

4.2. Comparisons with the State of the Art

We compare our method against the current SOTA depth
estimation methods from two classes: Monocular depth
estimation (MDE) and depth completion/upsampling. For
MDE methods, we compare our method with Metric3D
v2 [24], ZoeDepth [6], DepthPro [8], Depth Anything
v1 and v2 [67, 68] (short for DepthAny. v1 and
v2), Marigold [28] and Lotus [20]. For depth com-
pletion/upsampling methods, we compare our method
with BPNet [57], Depth Prompting [41] (short for D.P.),
MSPF [62]. To make a fair comparison with MDE meth-
ods, we align their predictions with ARKit LiDAR depth
using the RANSAC align method. According to whether
they have seen the testing data types during training, we
divide methods into two categories: zero-shot and non zero-
shot. We train a model Ourssyn only with HyperSim train-
ing set to make comparisons with the zero-shot methods.
As shown in Tabs. 1 and 2 and Figs. 4 and 5, our method
consistently outperforms the existing methods. Note that
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Zero
Shot

Net. / Post. /
w/o LiDAR

Depth Estimation TSDF Reconstruction
L1 ↓ RMSE ↓ AbsRel ↓ δ0.5 ↑ Acc ↓ Comp ↓ Prec ↑ Recall ↑ F-score ↑

No

Ours 0.0250 0.0829 0.0175 0.9781 0.0699 0.0616 0.7255 0.8187 0.7619
MSPF∗ 0.0326 0.0975 0.0226 0.9674 0.0772 0.0695 0.6738 0.7761 0.7133
DepthAny. v2∗ 0.0510 0.1010 0.0371 0.9437 0.0808 0.0735 0.6275 0.7107 0.6595
ZoeDepth∗ 0.0582 0.1069 0.0416 0.9325 0.0881 0.0801 0.5721 0.6640 0.6083
DepthAny. v2∗ 0.0903 0.1347 0.0624 0.8657 0.1264 0.0917 0.4256 0.5954 0.4882
ZoeDepth∗ 0.1675 0.1984 0.1278 0.5807 0.1567 0.1553 0.2164 0.2553 0.2323

Yes

Ourssyn 0.0327 0.0966 0.0224 0.9700 0.0746 0.0666 0.6903 0.7931 0.7307
D.P. 0.0353 0.0983 0.0242 0.9657 0.0820 0.0747 0.6431 0.7234 0.6734
ARKit Depth 0.0351 0.0987 0.0241 0.9659 0.0811 0.0743 0.6484 0.7280 0.6785
DepthAny. v2 0.0592 0.1145 0.0402 0.9404 0.0881 0.0747 0.5562 0.6946 0.6127
Depth Pro 0.0638 0.1212 0.0510 0.9212 0.0904 0.0760 0.5695 0.6916 0.6187
Metric3D v2 0.0585 0.3087 0.0419 0.9529 0.0785 0.0752 0.6216 0.6994 0.6515
Marigold 0.0828 0.1412 0.0603 0.8718 0.0999 0.0781 0.5128 0.6694 0.5740
DepthPro 0.2406 0.2836 0.2015 0.5216 0.1537 0.1467 0.2684 0.3752 0.3086
Metric3D v2 0.1226 0.3403 0.0841 0.8009 0.0881 0.0801 0.5721 0.6640 0.6083

Table 2. Quantitative comparisons on ScanNet++ dataset. The terms Net. , Post. and w/o LiDAR refer to the LiDAR depth usage of
models as the last table. Methods marked with ∗ are finetuned with their released code on ARKitScenes [3] and ScanNet++ [70] datasets.

ARKitScenes ScanNet++
L1 ↓ AbsRel ↓ Acc ↓ Comp ↓ F-Score ↑

(a) Ourssyn (synthetic data) 0.0163 0.0142 0.0746 0.0666 0.7307
(b) w/o prompting 0.0605 0.0505 0.0923 0.0801 0.5696
(c) w/o foundation model 0.0194 0.0169 0.0774 0.0713 0.7077
(d) AdaLN prompting 0.0197 0.0165 0.0795 0.0725 0.6943
(e) Cross-atten. prompting 0.0523 0.0443 0.0932 0.0819 0.5595
(f) Controlnet prompting 0.0239 0.0206 0.0785 0.0726 0.6899
(g) a + ARKitScenes data 0.0134 0.0115 0.0744 0.0662 0.7341
(h) g + ScanNet++ anno. GT 0.0132 0.0114 0.0670 0.0614 0.7647
(i) g + ScanNet++ pseudo GT 0.0139 0.0121 0.0835 0.0766 0.6505
(j) Ours (h,i+edge loss) 0.0132 0.0115 0.0699 0.0616 0.7619

Table 3. Quantitative ablations on ARKitScenes and Scan-
Net++ datasets. Please refer to Sec. 4.3 for detailed descriptions.

Ourssyn achieves better performance than all non-zero-shot
models [62, 68] on ScanNet++, highlighting the generaliza-
tion ability of prompting a depth foundation model.

4.3. Ablations and Analysis

Prompting a depth foundation model. We assess its im-
portance with two experiments: 1) Removing the prompt-
ing. Tab. 3(b) shows a significant performance drop. 2) Re-
moving the foundation model initialization [68]. Tab. 3(c)
shows a noticeable performance decline.
Prompting architecture design. We study different de-
signs: AdaLN, Cross-attention, and ControlNet as dis-
cussed in Sec. 3.2. Tab. 3(d,e,f) reveals that ControlNet
performs best but still falls short of our method.
Training data and edge-aware depth loss. We initially
incorporate ARKitScenes data, which only enhances per-
formance on ARKitScenes (Tab. 3(g)). Then we add Scan-
Net++, which improves results on both ARKitScenes and
ScanNet++ (Tab. 3(h)). However, the depth visualization
remains less than ideal (Fig. 3). Tab. 3(i) show that di-
rect supervision with pseudo GT depth from reconstruc-
tion methods decreases performance. Ultimately, employ-

Reference Image & LiDAR Output Depth TSDF Recon Point Cloud

Figure 6. Outdoor reconstruction by taking the vehicle LiDAR
as metric prompt. Please refer to the supp. for more video results.

ing the edge-aware depth loss that utilizes pseudo GT depth
and FARO annotated GT achieves comparable performance
with Tab. 3(h) but with superior thin structure depth per-
formance as shown in Fig. 3. We provide more qualitative
ablation results in the supp.

Running time analysis. Our model with ViT-L runs at 20.4
FPS for an image resolution of 768×1024 on a A100 GPU.
As ARKit6 supports 4K image recording, we test our model
at a resolution of 2160 × 3840 and achieve 2.0 FPS. Note
that our model can also be implemented with ViT-S, where
the corresponding speeds are 80.0 and 10.3 FPS. More test-
ing results can be found in the supp.

4.4. Zero-shot Testing on Diverse Scenes

Although our model is trained on indoor scenes, it general-
izes well to various scenarios, including new rooms, gyms
with thin structures, poorly lit museums, human and out-
door environments, as shown in Fig. 7, highlighting the ef-
fectiveness of prompting a depth foundation model. Please
refer to the supp. for video results.

4.5. Application: 3D Reconstruction

Our consistent and scale-accurate depth estimation benefits
the indoor 3D reconstruction as shown in Tab. 2 and Fig. 5.
Besides, the prompt of our model can be easily replaced



Figure 7. Zero-shot testing on diverse scenes.
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Figure 8. Robotic grasping setup and input signal types. Our
goal is to grasp objects of various types using image/LiDAR/depth
inputs. Red rectangles indicate potential object positions.

with vehicle LiDAR, which enables our model to achieve
large-scale outdoor scene reconstruction as shown in Fig. 6.
We detail the setup and include more video results for dy-
namic streets in the supp.

4.6. Application: Generalized Robotic Grasping

We set up a robotic platform to test our model in general-
ized robotic manipulation (Fig. 8), which typically requires
depth or RGB as observations. Good depth estimation en-
hances the generalization ability because it accurately de-
scribes the 3D information of surroundings [25, 74]. Specif-
ically, we train an ACT policy [77] to grasp various objects
into the box, using different types of input signals such as
RGB, LiDAR, and depth data from our model. We empiri-
cally find that our model generalizes well to unseen objects
like transparent and specular objects when trained on dif-
fusive objects, outperforming RGB and LiDAR inputs as
shown in Tab. 4. This is because RGB is dominated by
color, which leads to poor generalization across objects, and

Input Signal Diffusive Transparent Specular
Red Can Green Can

Ours 1.0/1.0/1.0 1.0/1.0/1.0 0.3/1.0/1.0 0.8/1.0/0.9
LiDAR 1.0/1.0/1.0 1.0/1.0/0.2 0.5/0.4/0.0 0.7/1.0/0.0
RGB 1.0/1.0/0.0 1.0/1.0/0.0 0.2/1.0/0.0 0.0/0.9/0.9

Table 4. Grasping success rate on various objects. Three num-
bers indicate objects placed at near, middle, and far positions. The
grasping policy is trained on diffusive and tested on all objects.

the iPhone LiDAR depth is noisy and lacks the capability to
perceive transparent objects. Please refer to the supp. for
detailed setup descriptions and videos.

5. Conclusion and Discussions

This paper introduced a new paradigm for metric depth esti-
mation, formulated as prompting a depth foundation model
with metric information. We validated the feasibility of
the paradigm by choosing the low-cost LiDAR depth as the
prompt. A scalable data pipeline was proposed to generate
synthetic LiDAR depth and pseudo GT depth for training.
Extensive experiments demonstrate the superiority of our
method against existing monocular depth estimation and
depth completion/upsampling methods. Furthermore, we
showed that it benefits for downstream tasks including 3D
reconstruction and generalized robotic grasping.

Limitations and future work. This work has some known
limitations. For instance, when using the iPhone LiDAR
as the prompt, it cannot handle long-range depth, as the
iPhone LiDAR detects very noisy depth for far objects. Ad-
ditionally, we observed some temporal flickering of LiDAR
depth, leading to a flickering depth prediction. These is-
sues can be addressed in future works by considering more
advanced prompt learning techniques that can extend the
effective range and temporal prompt tuning.
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Figure 9. Our accurate and high-resolution depth enables dynamic 3D reconstruction from a single moving camera. Here we illustrate the
reconstruction results of a human walking in the library. The foreground is segmented with a SAM2 [47] model.

In the supplementary material, we present more discus-
sions, additional results, and implementation details. Please
find more video results in our supplementary video.

A. Additional Discussions

A.1. Generalizability to Different Resolutions

This section discusses the generalization capability of our
model across different image and lidar depth resolutions
provided by ARKit4 and ARKit6. ARKit4 captures images
at a maximum resolution of 1440 × 1920 at 60Hz and li-
dar depth at 192× 256, while ARKit6 captures images at a
maximum resolution of 3024×4032 at 30Hz and lidar depth
at 240 × 320. Both ScanNet++ [70] and ARKitScenes [3]
are collected using ARKit4. Although our model is trained
using ScanNet++ and ARKitScenes data at a resolution of
1440 × 1920, we find that it generalizes well to ARKit6
images and depth at different resolutions. As shown in
Fig. 10, we include a comparison of depth estimation for
images of different resolutions, with an image resolution of
2160×3840 and a lidar depth resolution of 144×256, cap-
tured from the ARKit6 API.

A.2. Why Do We Need Synthetic Data?

The advantages of synthetic data include high-quality
ground truth depth, which has been crucial for the success
of many recent depth estimation works [8, 18, 28, 68]. We
also utilize synthetic data to achieve high-quality depth es-
timation results. Furthermore, the availability of real data

ARKitScenes ScanNet++
L1 ↓ AbsRel ↓ Acc ↓ Comp ↓ F-Score ↑

(a) Depth Any. as foundation 0.0132 0.0115 0.0699 0.0616 0.7619
(b) Depth Pro as foundation 0.0169 0.0150 0.0754 0.0676 0.7202
(c) Depth Pro 0.1225 0.1038 0.0904 0.0760 0.6187

Table 5. Additional quantitative ablations. Please refer to Ap-
pendix A.4 for detailed descriptions.

with lost-cost LiDAR and high-power LiDAR is currently
limited [3, 70], primarily to indoor scenes, while synthetic
data can further enhance diversity; for instance, our experi-
ments have shown that including human synthetic data [73]
improves our method’s generalization to human subjects.

A.3. Why Do We Need Real Data?

Training with real data can further address the inability of
synthetic LiDAR simulation to replicate LiDAR noise pat-
terns, thereby enhancing depth estimation capabilities. By
utilizing synthetic data, we have achieved preliminary re-
sults. However, as demonstrated by the quantitative exper-
iments in the main paper, the use of real data further en-
hances the performance. Here, we include additional quali-
tative results in Fig. 11, which show that real data is benefi-
cial because LiDAR simulation methods cannot fully repli-
cate the noise of real LiDAR.
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Ours ARKitRGBRGB Patch

Figure 10. Generalizability to different resolutions. Our model can infer depth for images of different resolutions from 512p to 2160p.

Trained w/ Synthetic & Real DataTrained w/ only Synthetic data

ARKit DepthRGB

Figure 11. Effects of using real data.

A.4. Replacing Depth Foundation Models

Since our model is a general design for DPT, it can be easily
adapted to other depth foundation models that also utilize
the DPT structure, such as Depth Pro [8]. Our experiments
demonstrate that it significantly enhances the performance
of Depth Pro, as shown in Tab. 5-(b,c), although it does not
outperform our choice of Depth Anything Tab. 5-(a).

RGB Donwsamp. Simu. Interp. Simu. Sparse anchors

Figure 12. Visualization results of simulated LiDAR. “Interp.
Simu.” is the proposed interpolation method, which is interpolated
from sparse anchors depth. This method effectively simulates the
noise of real LiDAR data. We also provide the naive downsampled
simulated LiDAR for comparison.

B. Additional Results

Visualization results of simulated LiDAR. We provide the
visualization results of our simulated LiDAR in Fig. 12.

ZipNeRF reconstruction results. High-quality and dense
observations are essential for effective 3D reconstruction.
However, the iPhone data from ScanNet++ [70] frequently
exhibits motion blur. To address this, we resample videos
from ScanNet++ to remove blurring frames. Specifically,
we calculate the variance of Laplacians for each image to
assess its sharpness and use the sharpness score to select
frames. For a 60fps video, we select one frame every 30



Trained with resampled framesTrained with released frames

Figure 13. ZipNeRF depth of different training frames. Train-
ing with resampled frames removing blurred frames leads to a bet-
ter ZipNeRF reconstruction.

frames, ensuring no repeated selection within any 6 con-
secutive frames, and guarantee at least one selection within
every 2 seconds. We find that this method significantly re-
duces motion blur and leads to a better ZipNeRF reconstruc-
tion as shown in Fig. 13. Additionally, we utilize both the
DSLR and iPhone data released by ScanNet++ to optimize
ZipNeRF, which substantially improved our experimental
results. Training ZipNeRF on ScanNet++ data required ap-
proximately 280× 2.5× 8 GPU hours. We will release our
processed data to benefit the research community.

FARO Scanned Mesh FARO Scanned Mesh Rendered Depth

ZipNeRF Reconstruction ZipNeRF Reconstruction Rendered Depth

Figure 14. Illustration of different depth annotation types.
Please refer to Appendix B for more descriptions.

Illustration of different annotation types. We provide an
illustration of different annotation types in Fig. 14. Here we
clearly observe the issues and advantages of different depth
annotation types. The GT depth in ScanNet++ is annotated
using a FARO scanned mesh. Due to the presence of many
occlusions in the scene, the scanned mesh is incomplete, re-
sulting in depth maps with numerous holes and poor edge
quality. The pseudo GT depth annotated using NeRF recon-
struction has accurate edges but performs poorly in planar
regions. Therefore, an edge-aware loss is proposed to merge

their advantages.

C. More Details
C.1. Details about Our Model

We employ the ViT-large model from Depth Anything
v2 [68] as our backbone model. The shallow convolutional
network consists of two convolutional layers, each with a
kernel size of 3 and a stride of 1, utilizing ReLU as the non-
linear activation function. The zero-initialized projection
layer is a 1×1 convolutional layer. For training on the Scan-
Net++ [70] dataset, we apply the loss function proposed
in the main paper. For training on the ARKitScenes [3]
dataset, we exclusively use the L1 loss. For training on syn-
thetic [49] data, we employ both gradient and pixel-wise L1
loss simply from ground-truth depth supervision.

C.2. Optional Design Details

As mentioned in the main paper, in addition to the pro-
posed design, we also explore optional designs including
AdaLN [43], Cross-attention [58], and ControlNet [75]. We
include a figure to illustrate these designs in Fig. 15. Our
experiments (Tab. 3 in the main paper) show that Control-
Net performs the best among these alternatives, but it is still
not as effective as our proposed design. The plausible rea-
son is that they are designed to integrate cross-modal in-
formation (e.g., text prompts), which does not effectively
utilize the pixel alignment characteristics between the input
low-resolution depth and the output depth. We also com-
bine the proposed design with ControlNet to investigate po-
tential further improvements. However, no additional im-
provements are observed (ours vs. combination are 0.730
vs. 0.731 in terms of F-score metric on ScanNet++), but
the computational costs increase. Therefore, we keep the
proposed design in the final version.

C.3. Evaluation Metrics

For depth metrics, we report L1, RMSE, AbsRel and δ0.5.
Their definitions can be found in Tab. 6.

Metric Definition

L1 1
N

∑N
i=1 |Di − D̂i|

RMSE
√

1
N

∑N
i=1(Di − D̂i)2

AbsRel 1
N

∑N
i=1 |Di − D̂i|/Di

δ0.5
1
N

∑N
i=1 I

(
max

(
Di

D̂i
, D̂i

Di

)
< 1.250.5

)
Table 6. Depth metric definitions. D and D̂ are the ground-truth
and predicted depth, respectively. I is the indicator function.

For reconstruction metrics, we report Acc, Comp, Prec,



MDE Foundation Model

Vision Transfomer Blocks

Patch 
Embed

Multi-Scale Reassemble

Multi-Scale DPT Fusion

Output Accurate Depth

(b) ViT Block with adaLN-Zero (c) ViT Block with Cross-Atten (d) ViT Block with ControlNet

(a) Prompt Fusion Block

Norm

MLP Forward

Norm

Multi-Head
Self-Attention

+

Prompt FeatureViT Inter. Feat.

+

Project Norm

MLP Forward

Norm

Multi-Head
Self-Attention

+

Prompt FeatureViT Inter. Feat.

+

Norm

Multi-Head
Cross-Attention

Norm

Multi-Head
Self-Attention

+

Prompt FeatureViT Inter. Feat.

+

Project

MLP forward 
omitted

+

Zero Project

Zero Project

Copy of
ViT Block

+

Residual Conv Unit ++

Residual Conv Unit

Zero-Conv Project

Prompt Feature Extraction

DPT Inter. Feat.

Prompt Feature

ViT Reasse. Feat.

Upsample Conv Project

Prompt Fusion Taken Design: 

Ablated Discarded Design: 

Linear 
Interpolate

Shallow
ConvNet

Pooling

Prompt Input Image

Multi-scale
Prompt Feature

Extract

Figure 15. Illustrations of our method and optional designs. Please refer to Appendix C.2 for more details.

Recall, F-score. Their definitions can be found in Tab. 7.
We use a voxel size of 0.04m for TSDF reconstruction.

Metric Definition

Acc meanp∈P (minp∗∈P∗ ||p− p∗||)
Comp meanp∗∈P∗(minp∈P ||p− p∗||)
Prec meanp∈P (minp∗∈P∗ ||p− p∗|| < .05)
Recal meanp∗∈P∗(minp∈P ||p− p∗|| < .05)
F-score 2×Perc×Recal

Prec+Recal

Table 7. Reconstruction metric definitions. P and P ∗ are the
point clouds sampled from predicted and ground truth mesh.

C.4. Baseline Details

For the results presented in the main paper and supplemen-
tary video for Metric3D v2 [24] and Depth Pro [8], we in-
put the ground-truth focal length into their models. The
ZoeDepth* [6] model is trained using reproduced code from
Depth Anything v1 [67], and we utilize the base model of
Depth Anything v1 for conducting experiments. The MSPF
results for ARKitScenes dataset are taken from [3], and we
retrain it using ScanNet++ [70] training data for testing on
Scannet++ with the reproduced code from ARKitScenes.

C.5. Ransac Alignment Details

For monocular depth estimation methods, we perform a
post-alignment to ensure fair comparison. We utilize
RANSAC alignment to align their output depth with the
iPhone LiDAR depth. Specifically, we first resize the out-
put depth to match the dimensions of the iPhone LiDAR
depth, then randomly formed several groups of samples.
Each group of sample points is used to calculate a scale

and shift, followed by voting using all points. The voting
threshold is set to the median of the differences between the
entire set of numbers and the median(Median Absolute De-
viation). Then we apply the scale and shift to the predicted
depth to align it with the ground-truth depth. This method is
more robust compared to the commonly used polyfit align-
ment in monocular depth estimation, typically improving
the F-score by 8-10% on ScanNet++ dataset.

Vehicle LiDARRGB

Ours BPNet

Figure 16. Qualitative comparison of vehicle LiDAR comple-
tion. We include more video results in the supplementary video.

D. Prompting with a vehicle LiDAR
We evaluate our method on the Waymo dataset to assess its
performance with vehicle LiDAR. Vehicle LiDAR signifi-
cantly differs from the LiDAR used in smartphones, as it
is generally coarse and consists of X-beam sparse LiDAR



(typically 64 beams for Waymo dataset [53]). Therefore,
before inputting the data into the network, we perform KNN
completion on the vehicle LiDAR depth (k = 4). We train
our model on the Shift dataset [54], a synthetic dataset de-
signed for autonomous driving, which includes RGB and
depth data. The LiDAR data is simulated using the ap-
proach detailed in the main paper. We evaluate our model
on the Waymo dataset. We make comparisons with BP-
Net [57] in Fig. 16. Our method demonstrates precise depth
estimation and we include more video results and street re-
construction results in the supplementary video.

E. Generalized Robotic Grasping Details

Detailed setups. We control the right arm of a Unitree H1
humanoid robot while fixing its lower body. The task is to
grasp the object on the table and put it into the box, one at a
time. The object is randomly placed at nearby, middle, and
far positions. The robot policy runs at 30 Hz. However, due
to overheating issues in our lab environment, the iPhone can
only stably capture images at 15 Hz, resulting in the visual
input being updated every two control steps.

We first teleoperate the robot to collect 60, 80 trajectories
for diffusive objects (red & green cans) and transparent ob-
jects (glass bottles); then, we take the diffusive set of data as
training set to train ACT [77] policies with different types of
visual inputs, including the estimated depth by our model,
ARKit depth directly from the iPhone, and also RGB im-
ages; during evaluation, we test the grasping performance
corresponding to different visual inputs on all objects.
Model architectures. We use the same network structure
with ACT [77] with one image input. ACT policy crops
all types of visual input at 480x640 resolution and pro-
cesses images with a pre-trained ResNet18 backbone[22].
For depth images, the first layer of the pre-trained network
is replaced with a 1-channel convolutional network. The
pretrained ResNet18 helps enhance the generalization of
policy. Without the pretrained parameters, the policy with
depth input only grasps the same position.

We include more video results in the supplementary
video.
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